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On R(4) Symmetries in Atomic Structure 

Sten Rettrup* and Colin D. H. Chisholm 

Department of Chemistry, The University of Sheffield, Sheffield $3 7HF, Great Britain 

By defining a new rotation group in four dimensions we show that previous 
phase discrepancies can be accounted for. Furthermore we demonstrate that 
the new R(4) group is the one to be used in the study of atomic correlation. 

1. Introduction 

It is well known, Fock [1] and Bargmann [2], that the full symmetry group of the 
non-relativistic hydrogen atom is the rotation group in four dimensions R(4) 
provided only bound states are considered. 

Between 1962 and 1975 several workers have investigated the possibility of using 
the group R(4) as an approximate symmetry group for atoms with more than one 
electron, Moshinsky [3], Wulfman [4], [5], Alper and Sinanoglu [6], Alper [7], 
Butler and Wybourne [8], [9], Rau [10], Alper [11], Sinanoglu and Herrick [12], 
[13], [14]. These authors came to differing conclusions on the validity of using 
R(4) for many-electron atoms. These conflicting views have not yet been satis- 
factorily explained. In this paper we critically examine the above authors' work in 
an attempt to finally understand the nature of R(4) symmetry in many-electron 
atoms. 

We find that a new R(4) group can be introduced and we define its generators. We 
employ the use of generalized Racah tensors since operators representing physical 
properties can be taken to be irreducible tensor operators. We find that this new 
R(4) group can be used to explain the discrepancies in the various phase 
conventions discussed by Alper [11]. 
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2. Generators for the Group R(4) 

The four dimensional rotation group R(4) is a six parameter semi-simple Lie 
group. We thus have six generators for the Lie algebra D2 of R (4) which we 
denote by/'1,/'2,/`3,/~1,/~2,/~3. The generators satisfy the commutation relations 
(CR's) 

[11,/~j] = Y. e,;~Mk 
k 

l x  l= it R x R = il (1) 

where 8iik is the usual Levi-Civita tensor. 

From these CR's it can be shown, Chisholm [15], that 

D2 = B1 + B1 (2) 

where B1 is the Lie algebra for the three dimensional rotation group R (3). As a 
consequence of Eq. (2) we have the result that R (4) = R (3) x R (3) and so the well 
known properties of R (3) can be used to obtain the properties of R (4). 

The irreducible representations (IR) of R (3) can be labelled by a symbol (j) where 
] = 0 , 1 , 2 , 3  . . . ( o r  j=0,2,!  1, 3, 2, . . . in the case of the double group R*(3)). The 
dimension of the IR (j) is (2j + 1). Since R (4) = R (3) x R (3) we find that the IR's 
of R(4) can be labelled by a symbol (hi2) and that the dimension of (]d'2) is 
(2jl + 1)(2j2 + 1). It is often convenient to label the IR's of R (4) by [p, q] where 
p =j1+12 and q =11-/2.  

Because R (4) is a rank two Lie groupthere  exists two invariant operators which 
may be taken to be R 2 + / 2  and R .  !. The eigenvalues o f / ~ 2 + / 2  are given by 
p (p + 2) + q 2 while those o f / ~ .  t are given by q (p + 1). 

The basis functions for the IR's of R (4) can be classified by the usual quantum 
numbers l and m because the branching rule for the reduction R (4) --> R (3) shows 
that 

l = p , p - 1  . . . . .  ]q]. 

It is well known, Chisholm [15], that for the hydrogen atom the three operators/'1, 
[2,/'3 are just the components of the orbital angular momentum while/~1,/72,/~3 
are the components of the reduced Runge-Lenz vector which for the hydrogen 
atom is an additional constant of motion. The reduced Runge-Lenz vector is 
defined (in atomic units) by 

/~=  1 ~ r  ~ / - ~  w h e r e ~ r = � 8 9  ) Zrr 
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3. Generalized Racah Tensors 

Following Judd [16] and Butler and Wybourne [8] we introduce a set of irreduc- 
A(k) ~ - -  ible tensor operators Vq t/~, B) which satisfy the fundamental CR's 

Vq (a,B)]=qvq (A,B) 
[[• z3~ k) (A, B)] = 4k (k + 1) - q (q + 1)t3~k21 (A, B) (3) 

with respect to the angular momentum operators [z and [• = ix + fly. 

Using the Wigner-Eckart theorem the matrix elements between two single 
particle eigenfunctions become 

(l,,m,l~(qk)(A,B)ll, m)=(_l)e_m, ( ~, k 1)(l,[l~(k)(A,B)l]l). (4) 
- q 

In Eq. (4) (i i i) is a 3-/" symbol and the reduced matrix element is defined by 

(l'llO(k)(A, B)I[/) = 8at'SBt[k] 1/2. (5) 

For convenience we use the abbreviation 

[x, y , . . . , z ] = ( 2 x + l ) ( 2 y + l ) . . .  ( 2z+ l ) .  

For given values of A and B ( -0)  non-zero operators can be constructed 
according to 

IA-BI<-k<-A+B, q = 0 , + l , + 2  . . . .  +k  

for each value of k. 

The operators can equally well be defined for half-integral quantum numbers. 
However in this paper we only study orbital transformations and half-integral 
numbers will not appear. 

The general commutator can now be evaluated to give the result 

[V(qkl)(a,B),*(k2)"-'D)]vq2 tt~, = ~(_l)k-~[ka, k2, k],/2(~ I k2 k) 
k,q q2 --q 

k ~(k) X[e~BC(--1)A+D+kl+k2{~ Ak2 BIvq (A,D)  

_~AD(_I)B+C+k{~ k2B AJ (k),.-,t~,B)] 

where {~ " i} is a 6-i symbol. 

For a many-electron system we can construct generalized Racah tensors by 

A(k) - I ~  k) (A, B) = E vq (A, B)i. 
i 

(6) 
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4. Generalized Racah Tensors for the R(4) Group 

The simplest case of generalized Racah tensors occurs when B = A. In this case we 
(1) [ a  have the three rank one operators vq ~ ,  A),  q = 0, +1 which are related to the 

spherical components of orbital angular momentum by, Judd [16] 

,-1 . /A (A  + 1)(2A + 1) 
6 (  1 ) (A, A) (7) 

A = 0  V 3 

where n is the principal quantum number. It follows that the three operators 
~1) (A,A) are generators for the group R (3). 

When ] B - A [ = I  we can construct the following six tensor operators 
~(1) t a  a ~ ( 1 ) r  vq t~ ,  ~ + 1), vq t ~  + 1, A);  q = 0, a-1. Three  of these operators can be related 
to the spherical components  of the reduced Runge-Lenz  vector as follows 

. -2  l + 1) ) ~(1) ~ ( A + l ) ( n Z - ( A  2 [v ) ( A + I ,  ~(1) --a = ~ (ql A ) -  Vq (A, A + 1)]. (8) 
A=O 3 

The set of six operators -a , --a can be taken as the generators of an R(4) group, 
Butler and Wybourne [8]. In what follows we shall refer to this R (4) group as the 
R group. 

In addition to the operators given by Eq. (8) we can also define three other tensor 
operators by 

O~ 1) = ~2 ~ ( A  + I)(n2_(A + I) 2) i[~(ql)(A + I ,A)+~I ) (A ,A  + I) ] (9) 
A = 0  3 

and the Cartesian components  of these operators can be shown to be Hermitian. 

Using Eq. (6) we have evaluated the CR's in Cartesian components  and we find 
that 

[~, 0 j ]  = Y~ eijkit~k (10a) 
k 

(~ x (~ = it. (10b) 

By comparing Eqs. (1) and (10a), (10b) we see that the commutators of Eqs. (10a) 
and (10b) correspond to a Lie algebra which is isomorphic to that for R (4). Since 
in the particular case of R(4)  this result contradicts Butler and Wybourne 's  [8] 
general assertion we present  in an appendix a detailed derivation of Eqs. (10a) and 
(10b). We agree that the generators used by Alper and Sinanoglu [6] do not give 
an R (4) group. However  the generators that we have defined do give an R (4) 
group. Because our generators have not been considered before we have a new 
R (4) group which is not related to the work in [6], [7]. In what follows we shall 
refer to this new R(4)  group as the Q group. As we shall see, it is this new 
mathematical R(4) group which gives approximate diagonalisation of the 
Coulomb interaction. 
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5. R(4) Groups and Phase Conventions 

In previous work with R (4) two different phase conventions have been used for 
the basis functions. One is the usual Condon and Shortley phase while the other is 
that introduced by Biedenharn [17]. 

Now the reduced matrix element of R(1) is given by 

(n, l + ll[/~")lln, l) = - 4 ( l  + 1)(n 2 -  (I + 1) 2) 

and for this result to be true the Condon and Shortley phase convention must be 
used. For the (~(~ operators we find the relation 

(n, l+  lll0~'lln, t ) = - i ( n ,  l +  lll/~'lln, l) 

The matrix representations of ~(~) and t2q are thus related by a basis trans- - - q  

formation corresponding to In, l, m)o = (- i ) t[n,  l, m)R  where the subscripts on the 
kets indicate to which R(4) group the kets belong. It follows that the matrix 
representations in the two R (4) groups are equivalent. By simply using In, l, m)o 
instead of In, l, m)R we now find that In, l, m)o satisfy the Biedenharn phase 
convention. 

As we shall see this has a profound significance when calculations are done using 
the different bases functions. 

In connection with the work of Alper [11] the R group corresponds to his 
mathematical group. By introducing the O group we have obtained a new 
mathematical group. 

6. Doubly Excited States of Helium 

In previous work with R (4) symmetry the most studied application has been on 
doubly excited states of helium particularly the 1S states arising from the 
configurations 2s 2 and 2p 2. With the usual R(3) configurational basis these 
configurations are very strongly mixed with respect to the Coulomb interaction. If 
R (4) symmetry basis functions are used for these states instead of the configura- 
tional basis functions the question arises as to whether the Coulomb interaction is 
approximately diagonalized. Alper and Sinanoglu [6] claim that their R (4) basis 
functions do approximately diagonalize the Coulomb interaction but Rau [10] 
and Butler and Wybourne [9] have refuted this by stating that their generators do 
not give an R (4) group. 

Using hydrogenic functions the results of calculations on the diagonalization of 
the Coulomb interaction using the various bases sets are given in Table 1. 

From Table 1 we can infer the following conclusions. In the configurational basis 
the 2s 2 and 2p 2 configurations are strongly mixed. In the R group basis used by 
Rau [10] and by Butler and Wybourne [9] there is no improvement on the mixing. 
However  when the Q group basis is used the Coulomb interaction is very nearly 
diagonalized. It would thus appear that in this case at least the Q group is an 
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Table 1. Coulomb interaction eigenvectors for the doubly excited 1S states of He 

Configurational R group Q group 
Eigenvalue basis a basis a basis a 
(a.u.) 2s 2 2p 2 [0, 0] [2, 0] [0, 0] [2, 0] 

0.2459 0.7738 0.2262 0.7255 0.2745 0.0008 0.9992 
0.4885 0.2262 0.7738 0.2745 0.7255 0.9992 0.0008 

Squares of eigenvector components. 

approximate symmetry group. Unfortunately we have not yet been able to attach 
any physical interpretation to the Q group. 

7. Conclusions 

By introducing the Q group as a new R (4) group we have resolved the phase 
anomaly pointed out by Rau [10]. 

Calculations on doubly excited states of helium indicate that the Q group might be 
an approximate symmetry group. Since however we cannot give a physical 
interpretation to the Q group we must conclude that the good approximate 
diagonalization of the Coulomb interaction in helium seems to be a fortuitous 
result. 

Appendix 

In this appendix we present a detailed derivation of Eqs. (10a) and (10b). For 
convenience we define a quantity F(x) by 

F(x )=[ (  x+ 1)( n 2 -  (x + 1)2)] 1/2 
3 . . (A1) 

Using the definition of the 0 operators given by Eq. (9) we can express the 
commutator relations between the spherical components as 

n - - 2  n - - 2  

[~-~(1) f~(1) 1 ~.. ~, F(A)F(B)[~(ql)(A,A+I) 
A = 0  B = O  

- -  ^ ( 1 )  . A . ( 1 ) z r j  n ,, ,(1) + 1) + v~2 (B + 1, a)].  (A2) -evq~ (A + 1, A), l)  q 2  ~ D ~  .i~ 

Carrying out the sumination over B we obtain 

n - - 2  

ql, q2, = ~-, F (A) [F(A+l ) { [~ I1 ) (A ,A+l ) , vq2 t~+l ,A+2)]  
A = 0  

+ [~(ql,) (A + 1, A), ~(1) vq2 (A +2, A + 1)]} 

+F(A){[~I)~(A, A + 1), vq~(1) z~ + 1, A)] 
r ,,(1) +LVq~ (A + 1, A), Vq~A(1)'At~, A + 1)]} 
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+ F ( A  - 1){[6(q1~ ) (A, A + 1), "(~)z~ vq2 ~.,~ - 1, A)] 
^(1) , , , (1) /~  + [vq~ (A + 1, A), vq~ t~,  ,a - 1)]}]. 
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(A3) 

Eq. (A3) can now be reduced using the general commutator relation Eq. (6) to 
give 

1 k 
"-q~,.-~2 J - -  Y F(A)  Y. (-1)k-q3[k]  1/a 

a=0 k,q q2 --q 

X[/A 

x [ F ( A  + 1){A 1 1 k 
+2  A A + I }  

x [13~ k) (A, A + 2) - (--1)k6~ k) (A + 2, A)] 

+ F(A)(1 - ( -1)  k) 

1 k+ } ~ k ) ( A , A ) + {  1 1 
A A 1 A + I  A + I  

+ F ( A - 1 )  A 1 A + I  A 

x r A(k) ] LVq ( A + I , A - 1 ) - ( - 1 ) k ~ ( q k ) ( A - 1 , A + I ) ]  �9 

k ] ^(k) 
A]Vq ( A +  1 , A + I ) ]  

(A4) 

Using the properties of the 6-j symbols we find that non-zero contributions will 
occur for only k = 1 and 2 in the separate terms of Eq. (A4). Thus Eq. (A4) 
reduces to 

rtS(1) tS(lh = _  1 2 
L.,ql, ~q2 J A~=o F ( A  3x/5(-1) q 

= q2  - - q  

1 2 
x [ F ( A + I ) { A I + 2  A A + I }  

• [~3(q2)(A, A + 2 ) -  t3(q2) (A +2,  A ) ] + F ( A  - 1) 

/1 1 
x A - 1  A + I  

x [~3(q2) (A + 1, A - 1) - . (2) ,~ ] vq t ~ -  1 , A +  1)] 

+y~6x/~(_l)q(1 1 1 ) F ( A ) [ { 1  1 
q xql q2 - q  A 

A + I  A + I  (A5) 

By a trivial rearrangement of the summation range over A we find that the terms 
involving tensor operators of rank two cancel each other out. For the remaining 
two rank one operator terms we obtain, by rearranging the summation over A in 
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the second term, 

[t,~(1 ) (.~(1)l=~2x/-~(_l)q(ql 1 1 1 )  
" ~ q l  ' "~eq2 J 

q q2 -q  

x Y. (A+l ) (n  2 - ( A + 1 )  2 ) 
A=I A A + I  

1 
+ A ( n 2 - A 2 ) { I  A AI-1}]  ~(ql)(A'A) (A6) 

By explicitly evaluating the 6-] symbols Eq. (A6) becomes 

[-'~O1 /-~O)l= (11 1 1)  "~ [A(A+I)(2A+I)]~/2.o), ~ A) 
I/q,, "--q2, Eq (-1) '-q~/~ q2 -q  A=I %/~ Uq ~,.,~k, 

(A7) 

Using Eq. (7) we see that Eq. (A7) can be written as 

0 1) ~ ( 1 ) l  (ql 1 (A8) q,, (,~q2..l=E (_l)e_q~/F" ~ 1 1 ~ , )  
q q2 -q]  q " 

Now Eq. (10b) is immediately obtained by transferring from spherical 
components to Cartesian components, using the well known result that 

&~) = _ 1 ( l ~  42 + i t , ) ,  ~') = t~, 

Consider next the commutators 

n--2 n-I [B(B + I)(2B + I)]~/2 
[/~#~), ~(1)1=i E F(A) 2 " 

%r J A = 0  B = 0  3 
^(1) .*. ( 1 ) / , *  ,,(1) X[Vql (B,B), A + I )  1, Vq2 t.'-x, + Vq2 (A + A)] 

,-2 [ [A (A  + l)(2A + l,11/2 • t r  A(1) e - -  , ~ x  A(1) =i Y F(A) J t t vq l t~ ,~ ) ,Vq2(A ,A+l ) ]  
A=O 3 

~ ( 1 )  e A  - -  + [6(q', ) (A, A) ,  Vq: t ~  -r i ,  A ) }  

+[(A+l)(A+2)(2A+3)] l /2"~^~ 1, A +  1), " ~  
3 ' iLl)q, Vq2 t~, A + 1)] 

+ [~3(q~,) (A + 1, A + 1), 13(q'2) (A + 1, A)]}]. (A9) 

Again using Eq. (6) this reduces to 

tlq=j = i • F(A) E (-1)k-q3[k] 1/2 1 k 
A=o k.a 1 q2 --q 

X [ - [ A ( A + I ) ( 2 A + I ) ]  1/2 | 1 3  " X / A + I  A1 I }  



On R(4) Symmetries in Atomic Structure 217 

r A ( k ) / ~  . 4\kA(k)  XLV q ~ t , A + l ) - [ - l )  vq ( A + I , A ) ]  

1 k +[(A+l)(A+2)(2A+3 3)]1/2 x{A 1 A + I  A + I }  

x [ ( -  1)k~3k (A, A + 1) - ~k)(A + 1, A ) ] ] .  (A10)  

W e  now p roceed  as in the evaluat ion  of the c o m m u t a t o r s  ItSelf, t~ ~ql~ ) ] and find that  
in the p resen t  case the only non-ze ro  t e rms  arise f rom tensors  of r ank  one.  By 
evaluat ing  the 6-]  symbols  we find that  Eq.  (A10) b e c o m e s  

[[(qli), "~q2/")(1)'lJ : i 2 f(A)x/-6Y. ( - l )  1-q 1 1 
a=0 q q2 --q 

X [~3~ 1) (A, A + 1) + vq'(1)t~'-- + 1, A) ]  

=~q ( - - l ) l - q J 6 ( l l  q21 --ql) Oo'(1) ( A l l )  

where  we have  used the definit ion -~ A(1) oh ~ q  given in Eq.  (9). Eq.  (A1 1) is clearly just 
tha t  given by  (10a) when  we t ransfer  to Car tes ian  componen t s .  

It  mus t  be  s tressed that  the der ivat ion in this appendix  is for  an R (4) g roup  only 
and thus cannot  be  c o m p a r e d  to the result  of  But ler  and W y b o u r n e  [8] who  were  
concerned  with genera to rs  for  ro ta t ion  groups  of genera l  even dimension.  The  
fact  tha t  our  genera to rs  for  the new R(4)  group  are closed under  c o m m u t a t i o n  
p robab ly  s tems f rom the fact that  R (4) is the only semi-s imple  ro ta t ion  group  in 
even dimensions .  All  the higher even d imens ion  ro ta t ion  groups  are  s imple 
groups.  
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